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Localized Prediction of Glutamate from Whole-Brain
Functional Connectivity of the Pregenual Anterior Cingulate
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Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional con-
nectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy
(MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex
(pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on
functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary
machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than
chance (R*> = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares
regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolu-
tion of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can
deliver novel insights into neurobiology by using complementary information.
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Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS
requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS
voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we
overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC.
Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fin-
gerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our
approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered
\functional connectivity in mental disorders. j
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Introduction

Since the beginning of the 20th century, the human brain is
understood to consist of regions with distinct microarchitecture
(Brodmann, 1909; Vogt and Vogt, 1919). Anatomical features,
such as cytoarchitecture, myeloarchitecture, and receptorarchi-
tecture distinguish cortical areas and highly constrain the local
processing capabilities of a region (Cloutman and Lambon
Ralph, 2012; Eickhoff et al.,, 2015; Zilles and Palomero-Gallagher,
2017; Palomero-Gallagher and Zilles, 2019). Cytoarchitecture
also shapes the functional repertoire of a region through specific
input and output connections, which embed the region in
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complex distributed networks (Cloutman and Lambon Ralph,
2012). This mesoscopic functional repertoire can be assessed
with modern functional magnetic resonance imaging (fMRI)
techniques, but methodological and ethical constraints limit us
in assessing its relationship to neurometabolism on the micro-
scale in vivo. Nevertheless, such linking of functional connectiv-
ity (FC) to local processing (e.g., the local excitation/inhibition
balance) could provide valuable insights into the pathophysiol-
ogy of psychiatric disorders.

Though in vivo measurements of local metabolism are not
possible at a microscopic level, the noninvasive method of pro-
ton magnetic resonance spectroscopy (‘H-MRS) is commonly
used to assess local neurotransmitter levels. Available sequences
such as point resolved spectroscopy (PRESS; Bottomley, 1987),
stimulated-echo acquisition mode (STEAM; Frahm et al., 1987),
and edited sequences such as MEGA-PRESS (Mescher et al,
1998) allow for the detection of glutamate (Glu) and GABA in
single voxels in the human brain. MRS measures of these metab-
olites may be used to better understand FC changes in psychiat-
ric disorders (Horn et al., 2010; Moeller et al., 2016; Allen et al.,
2019) or pharmacological challenges (Li et al., 2017), but such
results may suffer from limited interpretability because of the
low spatial specificity of conventional single-voxel spectroscopy.
An MRS voxel may cover several known cytoarchitectonically
distinct areas (Duncan et al., 2014). For example, MRS measures
of glutamate and GABA follow differential receptor distributions
along the anterior cingulate cortex (ACC; Dou et al., 2013; Li et
al.,, 2017). MRS imaging (MRSI), which maps the spatial distribu-
tions of metabolites in the brain (Posse et al., 2013) could over-
come this limitation. However, MRSI at sufficiently high spatial
resolution has impedingly long acquisition times for use in mul-
timodal (patient) studies and requires more expertise on the ac-
quisition and data-processing side compared with single-voxel
spectroscopy (Henning, 2018; Nassirpour et al., 2018). While sin-
gle-voxel spectroscopy is more easily implemented in clinical
and multimodal studies, it is not known whether the measured
concentrations of glutamate and GABA are representative of the
entire MRS acquisition voxel and whether the spatial resolution
of conventional MRS could be improved by using more fine-
grained weights informed by functional imaging.

The pregenual ACC (pgACC) is a region that has been fre-
quently studied in the MRS literature. Thus far, these studies
have not accounted for the considerable cytoarchitectonic and
functional variation between areas that comprise this region. The
pgACC is part of the default mode network (DMN) of the
human brain and has been implicated in the pathophysiology of
depression (Salvadore and Singh, 2013). Previous work suggests
altered glutamatergic metabolism in the pgACC in patients with
major depressive disorder (MDD; Walter et al., 2009; Horn et al.,
2010; Colic et al., 2019) and pgACC levels of a marker of gluta-
matergic metabolism (glutamate + glutamine) were correlated
with FC between pgACC and insula in patients but not in
healthy control subjects (Horn et al., 2010). Based on its differen-
ces in cytoarchitecture and densities of multiple receptors, the
pgACC has been divided into six distinct regions: p24a, p24b,
pv24c, pd24cd, pd24cv, and p32 (left hemisphere, 2918 % 447
mm?; right hemisphere, 3107 = 447 mm?’; Palomero-Gallagher
et al,, 2019). These areas were partly merged into a gyral compo-
nent (areas p24a and p24b into area p24ab; left hemisphere,
680 = 271 mm?; right hemisphere, 663 + 228 mm®) and a sulcal
component (areas pv24c, pd24cd, and pd24cv into area p24c; left
hemisphere, 603 = 195 mm?; right hemisphere, 711 = 92 mm?)
for computation of 3D probabilistic maps (Palomero-Gallagher
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et al., 2008, 2019). Studies in nonhuman primates have shown
that homologous areas have distinct structural connectivity pat-
terns (Pandya et al,, 1981). In humans, meta-analytic connectiv-
ity modeling showed that these areas have largely distinct
functional connectivity patterns, with activation in area p32
largely associated with tasks involving “theory of mind” and cog-
nitive regulation of emotion, and areas p24ab and p24c with tasks
involving the experience of one’s bodily state and action inhibi-
tion, respectively (Palomero-Gallagher et al., 2019). In sum, dis-
regarding this heterogeneity during MRS acquisition may
hamper the interpretation of links between local metabolism and
functional connectivity.

To overcome the problem of low spatial specificity of conven-
tional MRS, we propose a novel, multimodal approach offering a
more nuanced prediction of glutamate and GABA in a single
MRS voxel. To this end, we used ROIs originating from a voxel-
wise FC-based (“functional”) parcellation of a pgACC MRS voxel
and a cytoarchitectonic (“anatomic”) parcellation of the same
region (Palomero-Gallagher et al., 2019). We assessed correspon-
dence between the functional and anatomic parcellations and
tested whether the prediction of pgACC glutamate or GABA was
improved by parcellating the voxel (Fig. 1). Crucially, FC profiles
of p32 but not p24 could robustly predict local glutamatergic me-
tabolism. We explored why glutamate but not GABA levels were
significantly predicted from area FC by examining differential
associations between GABAergic and glutamatergic gene coex-
pression and FC. We then addressed the functional relevance of
the differential prediction of pgACC glutamate levels by “decod-
ing” partial least-squares regression (PLSR) (8 -weights. Overall,
our results demonstrate that fMRI may improve the spatial speci-
ficity of local neurometabolites assessed with MRS.

Materials and Methods

Participants

We included 143 healthy participants in this study. Data were pooled from
three studies. All participants were screened for prior and current neuro-
logic or psychiatric illness using the German version 5.0.0 of the M.LN.I.
(Mini-International Neuropsychiatric Interview; Ackenheil et al., 1999). All
study procedures were approved by the ethical committee of the University
of Magdeburg and conformed with the Declaration of Helsinki.

From the 143 measurements, we removed two datasets for which
MRS but not fMRI data were available. We then excluded four datasets
that did not fulfill MRS quality criteria (see Data acquisition and prepro-
cessing) as well as two additional datasets with insufficient water sup-
pression in the MRS data (identified through visual inspection of the
baseline by L.C., M.L., and L.M.). Visual inspection of the MRI data by
L.C, L.M,, and M.L., with a final decision by M.L,, led to the exclusion of
37 further measurements. These datasets had either insufficient coverage
of the cerebellum, or striping or ghosting artifacts. Last, several partici-
pants participated in more than one MRS acquisition. In these cases, we
discarded the measurement that did not meet initial quality criteria or,
in case multiple measurements of the same participant were of sufficient
quality, we selected the measurement with the best MRS and/or fMRI
data quality in advance of the current analysis. This step excluded 10
additional measurements.

The final sample consisted of 88 participants with good-quality rest-
ing-state and MRS data (age, 28.81 % 9.02 years; 35 females) for analysis
of Glu/creatine + phosphocreatine (tCr). For GABA™ /tCr, one female
and four male participants could not be included in the analyses because
of Cramer-Rao lower bounds (CRLBs) exceeding the cutoff of 20, lead-
ing to a reduced sample size of 83 participants (age, 28.6 = 8.99 years; 34
females).

Data acquisition and preprocessing
MRS. Ultra-high-field data were acquired on a 7 T MAGNETOM
scanner equipped with a 32-channel head coil (Siemens). Before MRS
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Overview of the primary analysis pipeline. To improve spatial information on local Glu and GABAergic levels measured with MRS, an MRS ROl was parcellated based on seed-based

FC to 132 atlas nodes. From this hierarchical clustering step, two clusters emerged (Extended Data Figure 1-1). Clusterwise FC profiles were used as input into elastic net and partial least-
squares regression models to predict GABA™/tCr and Glu/tCr residualized for gray matter proportion in participants’ MRS voxels.

measurements, an MPRAGE T1-weighted scan was acquired. The echo
time (TE) was 2.73 ms, repetition time (TR) was 2300 ms, and inversion
time was 1050 ms. The in-plane field of view (FOV) was 256 mm. The
flip angle was set to 5°. Images were acquired with a bandwidth of
150 Hz/pixel and 0.8 mm isotropic image resolution.

Participants’ T1-weighted scans were used for accurate placement of
the pgACC voxel, according to an established protocol of anatomic land-
marks described in the study by Dou et al. (2013). Briefly, the pgACC
voxel (10 x 20 x 15 mm?) was placed in the bilateral pgACC and cen-
tered on the sagittal midline to ensure maximal coverage of cingulate
gray matter. Automatic shim routines were used to optimize B, homoge-
neity. We applied a STEAM sequence with variable-rate selective excita-
tion radio frequency pulse (Dou et al., 2013) with short TE/mixing time
(20 ms/10 ms) and TR of 3000 ms. Metabolite spectra were acquired with
128 averages. A single water reference signal was acquired for eddy cur-
rent correction. The bandwidth was 2800 Hz, and the acquisition time
for one image was 731 ms.

MRS data were fitted in LCModel version 6.3.0 (Stephen Provencher;
Provencher, 2001). The basis set used for fitting included Cr, Glu,
myo-inositol, lactate, N-acetylaspartate (NAA), phosphocholine (PCh),
taurine, aspartate, GABA, glutamine, glucose (Glc), alanine, NAA-gluta-
mate (NAAG), phosphocreatine, scyllo-inositol, acetate, succinate, phos-
phorylethanolamine, glutathione, citrate, and glycerophosphocholine.
The analysis window was set to range from 4.0 to 0.6 ppm. Eddy current
correction was performed based on the water signal (LCModel parameter
DOECC = T) and water suppression was performed (DOWS = T). The
attenuation factors of water (ATTH20) and metabolites (ATTMET) were
assumed to be 0.67 and 0.69, respectively. The chemical shift of the singlet
used for scaling (Cr) was set to 3.0 ppm. To account for uncertainty in the
referencing between in vitro (the simulated basis set) and in vivo measure-
ments, the default SD of shift (DESDSH) and the expectation of 1/T2
(DEEXT?2) were set to 0.01 and 12.0, respectively. Additional changes in the
SDSH from the new DESDSH were applied for NAA (0.004), NAAG
(0.004), Glc (0.025), and PCh (0.025). Lactate, scyllo-inositol, and acetate
were omitted (CHOMIT) from the basis set used for fitting.

In all analyses, we used glutamate and GABA as a ratio to total crea-
tine (i.e., tCr). Metabolite values were considered of insufficient quality
if the signal-to-noise ratio (SNR) was <20, if the line width [full-width
at half-maximum (FWHM)] was >24 Hz or if the CRLB was <20%. In

our final sample used in the analyses of glutamate (1 =88), mean = SD
SNR was 5.639 = 1.907. For FWHM and CRLB, the mean = SD values
were 43.455 * 6.710 Hz and 3.159 = 0.933, respectively. For the analyses
of GABA (n=83), the mean * SD SNR was 43.940 *+ 6.421, FWHM was
5.613 + 1.907 Hz, and CRLB was 8.928 * 2.556. Mean raw and fitted
data are shown in Figure 2. To rule out that effects can be attributed to
the denominator tCr, we computed water-scaled (“absolute”) millimolar
concentrations of Glu and GABA™ using the procedure outlined in the
study by Giapitzakis et al. (2018).

We corrected metabolite values for voxel gray matter (GM) content.
Partial volume corrections are necessary even when using concentrations
relative to creatine, because although tCr, Glu, and GABA all have
higher concentrations in GM compared with white matter (WM) and
CSF, the metabolite distributions are not identical (Nassirpour et al.,
2018). Additionally, tCr and Glu are not necessarily correlated with GM
proportion to the same degree (Zhang and Shen, 2015). If this is not
accounted for, small changes in the denominator may lead to dispropor-
tionally high variance in the ratios (Li et al., 2003). To perform this par-
tial volume correction, we segmented participants’ T1-weighted images
using voxel-based morphometry (VBM) in the CAT12 toolbox for SPM
(http://dbm.neuro.uni-jena.de/cat/index. html#VBM; Ashburner and
Friston, 2005). MRS voxels were normalized to MNI space using the for-
ward deformation field produced during segmentation and normaliza-
tion of the structural scans. Participants’ normalized gray matter tissue
probability map produced by VBM were then masked with their nor-
malized MRS mask, and the percentage of probable voxel GM content
was calculated. We constructed linear regression models in which Glu/
tCr or GABA ™ /tCr were predicted from voxel GM content. The resid-
uals of these models represented the Glu/tCr of GABA*/tCr after the
influence of the percentage of GM in the voxel has been removed. We
performed all further analyses on these residuals.

rs-fMRI acquisition. For the acquisition of resting-state fMRI (rs-
fMRI) data, participants were instructed to keep their eyes closed and think
of nothing in particular. The acquisition time for this measurement was
13 min and 18 s, and TR/TE were 2800 and 22 ms, respectively. The image
resolution was 2 mm isotropic, and the in-plane FOV was 212 mm. The flip
angle was 80°. Sixty-two slices were acquired for a total of 280 volumes. In-
plane parallel imaging was done with GRAPPA (generalized autocalibrating
partially parallel acquisition) image reconstruction (Griswold et al., 2002)
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represent the mean fits for glutamate (n = 88) and GABA (n =83).

acceleration factor 3. The first 10 volumes of resting-state data were dis-
carded to reach steady state.

ROI definition. For functional parcellation, we created an ROI based
on participants’ pgACC MRS masks. Participant-specific masks would
introduce a bias in the functional connectivity profile and could there-
fore inflate associations with local neurometabolism. For this reason, we
created a composite mask. We resampled normalized participants’ MRS
masks to the space and resolution of functional images (2 x 2 x 2 mm°).
From the resulting masks, we created a composite group MRS ROI such
that each voxel within the ROI was contained in the normalized MRS
mask of at least two participants (i.e., threshold for inclusion of a voxel,
>1). In addition, we used a recently published anatomic parcellation of
the pgACC as a second, atlas-based ROI parcellation (Palomero-
Gallagher et al., 2019). This parcellation consists of maximum probabil-
ity maps (MPMs) of areas p24ab, p24c, and p32. The delineation of the
areas reflects cytoarchitectonic differences and is based on 10 postmor-
tem human samples.

rs-fMRI preprocessing. Preprocessing of resting-state data were
done using the CONN toolbox (Whitfield-Gabrieli and Nieto-
Castanon, 2012). Briefly, images were realigned and unwarped
(motion correction) and slice-time corrected. Functional and
structural images were then segmented using default tissue proba-
bility maps and normalized to MNI coordinates using direct nor-
malization and resampled to 2 mm isotropic voxel size. To take the
fullest advantage of the gained spatial resolution as a result of
using ultra-high-field strength, we did not apply spatial smooth-
ing. This approach also allowed us to limit the calculation of seed-
based FC to the MRS ROI. Further denoising was performed using
custom MATLAB scripts. In this step, time series from voxels with
either a GM probability of >0.35, or from those voxels falling

Summary of MRS data quality. This figure shows the mean raw and fitted spectra across all participants
(n=88) in black and red, respectively. The shaded band around the raw data depicts the SD of the raw spectra. Mean
residuals (n = 88) are shown at the top of the figure in black. The line plots below the mean raw and fitted spectra
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within the MRS ROI, were z-scored, despiked,
and subjected to quadratic detrending, after
which six motion parameters (estimated during
the realignment step) and the mean WM signal
were regressed out. We did not perform band-
pass filtering of the time series, as most high-
frequency fluctuations related to physiological
noise were likely to have been removed by
regressing out the mean WM signal (Kahnt et
al., 2012) and low-frequency drifts were
removed in the detrending step (Tanabe et al.,
2002).

FC calculation. FC was calculated separately for
the group MRS ROI and the anatomic ROIL As
seed voxels, we selected only those fMRI voxels in
ROIs. To be able to interpret the resulting cluster
solution in anatomically informed ways and to
reduce the feature space to k closer to our N value
(N = 88), we selected the 132 CONN atlas nodes as
target ROIs. These include Harvard—-Oxford corti-
cal and subcortical ROIs (Desikan et al., 2006) as
well as cerebellar ROIs from the AAL (automated
anatomical labeling) atlas (Tzourio-Mazoyer et al.,
2002). Functional connectivity between seed time
series and mean target time series was calculated as
the Pearson correlation between the two. This
resulted in a three-dimensional connectivity matrix
with 1216 (MRS ROI) or 2160 (atlas-based ROI)
rows (seeds), 132 columns (target ROIs), and 88
participants in the z-dimension.

— Fit
— Raw

Connectivity-based parcellation of the MRS ROI
We parcellated the pgACC MRS ROI into clusters
of similar connectivity using resting-state func-
tional connectivity-based parcellation. The aim of
this method is to decrease within-cluster distance
and to increase between-cluster distance (Eickhoff
et al,, 2015). First, the seed x ROI x participant
matrix was Fisher z-transformed and averaged
across participants (Kahnt et al., 2012). We then
computed the correlation between the connectivity profiles of every
seed. To finally parcellate contained voxels, we created a similarity ma-
trix (Ngeeq X Ngeeq) With the Pearson correlation coefficient as the dis-
tance measure.

To assess the functional hierarchy within the MRS seed voxel, the
resulting similarity matrix was then subjected to hierarchical clustering
to cluster functional voxels according to their similarity in terms of
whole-brain functional connectivity (Johnson, 1967). A major advantage
of hierarchical clustering is that, unlike, for example, the popular k-
means algorithm, a hierarchical approach does not require a predefined
number of clusters. The dendrogram may be cut at any level, with k + 1
clusters always nested in k clusters (Cloutman and Lambon Ralph, 2012;
Eickhoff et al., 2015). We used the “average distance” linkage algorithm
for clustering. Based on inspection of the dendrogram and the FC matri-
ces, a two-cluster solution was found to be optimal for the overarching
goal of the study. Note that because of the hierarchical clustering algo-
rithm, more fine-grained parcellations could be tested to further localize
predictive voxel clusters within their cluster branch. Yet, this would
come at the cost of multiple-comparison correction and makes specific-
ity incrementally harder to demonstrate. Thus, we decided to focus
solely on the two-cluster solution to demonstrate the utility of the
method in principle.

On account of their functional similarity, we averaged the functional
connectivity to target regions across all seed voxels for each cluster to
reduce the number of features in subsequent analyses. This resulted in
separate matrices for each cluster, representing the cluster-to-target FC
for each participant. To assess effectivity of functional parcellation, we
calculated the within-cluster distance (sum of squares) and compared it
to the between-cluster distance (sum of squares). Both within- and
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between-cluster distances were compared with whole MRS ROI distance
to mean FC.

Cluster validity

Studies using tractographic and functional connectivity-based parcella-
tion showed substantial correspondence between their parcellation and
probabilistic cytoarchitectonic maps (Blumensath et al., 2013; Wig et al.,
2014; Gordon et al., 2016). Others have provided qualitative evidence
(visual inspection) for overlap between cytoarchitecture and connectivity
based-derived parcellation (Beckmann et al., 2009; Gordon et al., 2016;
Balsters et al., 2018).

We compared our functional clusters to the anatomic parcellation of
the pgACC. We summed the MPMs of clusters p24ab and p24c to create
a mask of area p24. The MPMs of areas p24 and p32 were then
resampled to the space of our functional clusters. MPMs were restricted
to MRS ROIs. The overlap between the MPMs and the functional clus-
ters was then calculated using Dice coefficients (DCs; Arslan et al.,
2018).

Influence of individual participants’ voxel placement

To investigate a possible mediating influence of participants’ exact voxel
placement on neurometabolite prediction, we compared the means of
overlap of participants’ individual MRS masks with functional p32
(meanpc = 0.357, SDpc = 0.125) and with functional p24 (meanpc =
0.482, SDpc = 0.112; tg7) = —5.108, p < 0.001). The Dice overlap between
individual MRS voxels and functional p32 did not correlate with local Glu/
tCr (fgs) = —0.952, p=0.344) or GABA™ /tCr (ts1)= 1311, p=0.193), con-
firming that individual participants’ voxel placement did not influence our
results.

Statistical analyses

Correlational analyses and t tests were performed in R (version 3.5.0) with
the RStudio IDE (version 1.0.136). All other statistical analyses were per-
formed in MATLAB 2019a. The a was set to 0.05, two-tailed unless noted
otherwise. Because the methods—elastic net (EN) and partial least-squares
regression—are not independent, but complementary, we did not correct
for multiple comparisons.

Demographics. To assess the influence of possible confounders, for
both Glu/tCr and GABA * /tCr we calculated Pearson’s correlations with
age and gray matter proportions. To test for a difference between Glu/
tCr and GABA™/tCr between male and female participants, we per-
formed a Welch’s two-sample ¢ test.

Characterization of functional ROI FC profiles. We aimed to charac-
terize the functional connectivity profiles of the functional areas p32 and
p24. To this end, we calculated participant-wise mean time series for
each area, and calculated Pearson’s correlations with participant-wise
whole-brain time series. We performed a paired t test on both areas to test
which brain areas were significantly more functionally connected to either
functional area, compared with the other functional area. This analysis was
conducted using an implementation of threshold free cluster enhance-
ment (TFCE) in MATLAB (https://github.com/markallenthornton/Matlab
TECE). The threshold for significance was set at 0.05, TFCE corrected.
For visualization purposes, we repeated the paired ¢ test in MATLAB
and plotted the unthresholded ¢ values (p32> p24) by Yeo network
(see Fig. 4E).

Neurosynth decoding. To further illustrate the difference between
functional p32 and p24 FC, we “decoded” average FC difference maps
(p32 - p24) using data from the Neurosynth framework (Yarkoni et al.,
2011). The Neurosynth framework comprises neuroimaging data and
text extracted from 14,371 fMRI studies. The decoder toolkit imple-
mented within this framework allows for decoding cognitive states from
a given (activation) map (Rubin et al., 2017). Using this toolkit, we corre-
lated the average FC difference map with all cognitive state maps avail-
able in the Neurosynth database (release 0.7). Each voxel in a cognitive
state posterior probability map reflects the likelihood that a cognitive
state term is used in a study if the voxel is activated (Rubin et al., 2017;
Quintana et al., 2019). The top 40 terms correlated with the difference
map are displayed in a word cloud (see Fig. 9F).
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Partial least-squares regression. To predict Glu/tCr and GABA™ /tCr
from functional and anatomic p32 and p24 FC, we used PLSR
(McIntosh and Lobaugh, 2004; Krishnan et al., 2011). PLSR is a method
that is particularly suitable for high-dimensional regression problems,
where the number of parameters is larger than the number of samples.
PLSR projects the predictor variables into a latent space, while optimiz-
ing the prediction of the outcome. PLSR is similar to principal compo-
nent regression, but while principal component regression only
constructs components based on the captured variance of the predictors,
PLSR aims to maximize covariance between factors extracted from pre-
dictors and the outcome variable.

PLSR was run in MATLAB using the plsregress function, which uses
the SIMPLS algorithm (de Jong, 1993). New PLSR models were con-
structed for each area and each metabolite. One component was retained
in each analysis. As outcome variables, we used the residuals from a
regression model where voxel GM proportion predicted either Glu/tCr
or GABA'/tCr. The resulting residuals were subsequently z-scored.
Predictors were the p24 or p32 FC values for each participant. To statisti-
cally assess the obtained model fit (residual sum of squares; Abdi, 2010),
we performed permutation tests with 1000 permutations of the outcome
measure. To test whether one region explained more variance than the
other area or the unparcellated MRS ROI, we first calculated the differ-
ence in R* between two models (e.g., p24 and p32). Then, we created a
null distribution by running PLSR models with 1000 permutations for
both ROIs simultaneously, using the same permuted outcome vector for
both ROIs. We assessed statistical significance by comparing the true dif-
ference in R? to the permutation distribution.

Elastic net. EN models are a combination of least-absolute-shrink-
age-and-selection-operator (LASSO) regression and ridge regression.
EN models perform variable selection while simultaneously shrinking
regression coefficients to prevent overfitting. We use EN as a comple-
mentary approach to PLSR. PLSR fits a model based on global informa-
tion extracted from the feature space and outcome. It is thus able to pick
up diftuse, global effects of functional connectivity on local metabolite
concentrations. EN, in contrast, penalizes some regression coefficients
(here FC to target ROIs) to zero, resulting in a sparse model. EN there-
fore more strongly enforces spatially specific effects.

Residualized GABA™/tCr and residualized Glu/tCr were predicted
using EN models fit for both functional and anatomic p24 and p32 ROIs.
a, the weighing term of LASSO and ridge regression in the EN, was set a
priori to 0.5. The mean squared error of the model fit was estimated
using 10-fold cross-validation. A was set to the value with minimum
cross-validation error. Robust 8-weights used for predicting metabolite
concentrations were derived from the median of 20 EN iterations.
Descriptive statistics of model fit are given by the R* of predicted metab-
olite values and actual metabolite values. Analogous to the PLSR models,
we assessed the model fit (R%) using a permutation test where the order
of the outcome vector was randomly permuted (N =1000). Also analo-
gous to the PLSR models, we compared the difference in explained var-
iance between two areas using permutation tests with 1000 permutations
of the outcome vector. Given the significant association between Glu/tCr
and age in our sample, we ran EN and PLSR models to predict age rather
than glutamatergic metabolism and compared model performance
to models where age was regressed out of Glu/tCr and the predic-
tors. To assess how spectral quality (CRLB and line width) relates to
the prediction models, we computed the residuals (observed values
- predicted values) of the model predicting residualized Glu/tCr, as
a measure of the quality of the prediction for each participant. These
model residuals were then correlated with the line widths and
CRLBs, respectively. For the prediction of residualized Glu/tCr
from all ROIs (functional and anatomic), lower residuals were asso-
ciated with lower CRLBs (r values > 0.560, p values < 0.0001) and
line widths (r values >0.210, p values < 0.05), meaning that better
MRS data quality is associated with better prediction of metabolites
from functional connectivity. As predicted values for GABA™/tCr
were consistently zero, these predictions were not associated with
MRS quality measures.

Differential mRNA coexpression. To explore what could explain the
differential association between glutamatergic metabolism and FC from
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Figure 3.  Functional and anatomic parcellations. A, Functional parcellation. Dark orange, Cluster 1; light orange, cluster 2. B, Anatomical parcellation. Green, p32; blue, p24. €, Overlap of connec-

tivity-based parcellation results with maximum probability maps from Palomero-Gallagher et al. (2019). MPMs are masked with the MRS ROI for computation of Dice overlap coefficients, dl.: cluster.
D, The z-scored and de-meaned FC matrix sorted by functional clusters. Dark orange, Cluster 1; light orange, cluster 2. E, Within-cluster distance decreases with functional parcellation (median: clus-
ter 1, 2.25; cluster 2, 2.16; unparcellated, 2.83). F, Between-cluster distance increases with functional parcellation (median: cluster 1, 4.29; cluster 2, 4.27; unparcellated, 2.83).

the two functional areas, we investigated gene coexpression. mRNA
expression data from six donor brains were obtained from the Allen
Human Brain Atlas (https://human.brain-map.org). We selected a subset
of genes that is associated with glutamatergic and GABAergic transmis-
sion, receptors, transport, and metabolism (Extended Data Fig. 7-1, full
list of selected genes). When multiple probes were available for the same
mRNA, we selected the probe with the highest differential stability (i.e.,
the probe with the lowest spatial variability between donors; Hawrylycz
et al., 2015; Quintana et al., 2019).

We investigated correlations between functional connectivity and
gene coexpression within networks. Previous research has demonstrated
that regions that are functionally connected (i.e., are part of functional,
distributed networks) show similar gene expression patterns distinct
from those shared within other networks (Richiardi et al, 2015;
Anderson et al., 2018; Huntenburg et al., 2018). The different resting-
state functional connectivity from the two areas to the rest of the brain
may be explained in part by glutamatergic or GABAergic gene coexpres-
sion patterns. Therefore, we further explored whether gene coexpression
between the pgACC and the CONN atlas regions is differentially corre-
lated with functional connectivity from functional p32 and p24.

To this end, we used the gene set described above and computed
mRNA expression maps according to Quintana et al. (2019) for each do-
nor. Donors’ expression maps were z-scored and winsorized (threshold:
absolute z-score = 3.5). Coexpression was calculated separately for each
gene and functional area. mRNA coexpression was calculated as the
z-transformed Pearson correlation between the area and each of the 132
target ROIs. Subsequently, we calculated the Pearson’s correlation
between coexpression and mean FC for each target ROI and averaged
this across network. For each network and neurotransmitter, we tested
whether coexpression-FC correlations differed from zero using one-
sample f tests. For the networks showing nonzero correlations of gene
coexpression with FC, differences in the correlation between mRNA
coexpression and functional connectivity were compared using
Kolmogorov-Smirnov tests for the associated neurotransmitter (GABA
or Glu) each gene. For the ventral attention network (vAt) specifically,
we tested whether coupling between canonical structural and individual
functional aspects was lower for Glu compared with GABA. To this end,
we calculated bootstrapped mean correlations of gene coexpression

associations with metabolite levels and mean correlations of FC with
metabolite levels (number of iterations, 50,000). We resampled the
resulting bootstrapped vectors and calculated the distance between func-
tional and canonical associations, for both glutamate and GABA sepa-
rately. Statistical significance of the difference between glutamate and
GABA was assessed with a one-sample f test.

Cognitive state correlates of p32 and p24 FC-glutamate association.
To explore the potential functional relevance of the differential pre-
diction of pgACC glutamate levels, we correlated the PLSR 8-maps
produced by models ran on functional p24 and p32, as well as the
difference between the two B-maps with association Z maps, using
the Neurosynth decoder (see Materials and Methods, subsection
Neurosynth decoding).

Data and materials availability

Raw mRNA expression data are available from the Allen Human Brain
Atlas (http://human.brain-map.org). Code for functional imaging and
MRS preprocessing as well as statistical analyses and figures will be
made available on request. Maps with trained loadings are shared on
neurovault (https://neurovault.org/collections/ CWXNJGOYY/).

Results

Functional and anatomic parcellations

For the functional parcellation, we created a group ROI based on
participants’ pgACC MRS masks. Participant-specific masks
would introduce a bias in the FC profile and could therefore
inflate individual associations with neurometabolism. Therefore,
we created a composite mask. In addition, we used a recent
cytoarchitectonically informed parcellation of the pgACC as a
second, atlas-based ROI parcellation based on 10 postmortem
human samples (Palomero-Gallagher et al., 2019). This anatomic
parcellation consists of MPMs of p24ab, p24c, and p32. We par-
cellated the MRS ROI into two clusters of similar connectivity
using hierarchical clustering (for details, see Materials and
Methods, subsection Connectivity-based parcellation of the MRS
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ROI). Seeds were fMRI voxels within
the group MRS ROI; target ROIs were
the 132 CONN atlas regions.

We compared the resulting func-
tional clusters to the anatomic parcella-
tion of the pgACC. For this purpose,
anatomic maps of p24 and p32 were re-
stricted to MRS ROIs. The overlap
between the MPMs and the functional
clusters was then calculated using DCs
(Arslan et al., 2018; Fig. 3C). Cluster 1
overlapped primarily with anatomic
area p32 (DC =0.750), but less with area
p24 (DC=0.322). Cluster 2 overlapped
with anatomic area p24 (DC=0.706)
but not with area p32 (DC=0.079). We
thus observed good concordance between
the parcellation of this region based on
local, mesoscale differences and a parcel-
lation based on whole-brain, macroscopic
functional differences. Hence, functional
clusters 1 and 2 are referred to as func-
tional p32 and p24, respectively, in the re-
mainder of this text.

A p32>p24

E Decoded average FC differences

y social

Areas covered by the MRS voxel show
differential associations with brain
networks

To characterize the functional connectiv-
ity profiles of each functional area, we cal-
culated area-to-whole-brain connectivity
and performed paired t tests on the
results. Figure 4A-D depicts only those
voxels that showed significantly different n
connectivity (p < 0.05, TFCE). Compa- PR e
red with functional p24, functional p32
showed stronger connectivity to areas that
are part of the DMN, including the precu-
neus and posterior cingulate cortex, infe-
rior parietal lobe, ventromedial/medial
prefrontal cortex, temporal pole, and lat-
eral temporal cortex (Fig. 4A,B). It was
also more strongly connected to the infe-
rior frontal gyrus. Functional p24 had rel-
atively stronger connections to areas that
are associated with the vAt, including the
striatum, anterior insula (AI), anterior mid-cingulate cortex, and
amygdala (Fig. 4C,D). Moreover, according to the ¢ value distribu-
tions of the seed regions, functional p32 FC is more broadly con-
nected to most Yeo networks (Yeo et al, 2011) compared with
functional p24 FC, which is more specifically associated with the
attention networks [vAt and dorsal attention network (dAt);
Fig. 4F].

To further investigate potential associations of average FC differ-
ences between functional p32 and p24 and cognition, we used the
Neurosynth framework (Yarkoni et al., 2011), which comprises
neuroimaging data from 14,371 fMRI studies (release 0.7). The de-
coder toolkit implemented within this framework allows for
decoding cognitive states from a given (activation) map (Rubin et
al., 2017). Compared with p24, p32 is more strongly connected to
a set of regions that, when activated, are associated with cognitive
states such as theory of mind, mentalizing, self-referential cogni-
tion, and social cognition, which are cognitive states in which the
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DMN is thought to be heavily involved (Spreng and Grady, 2010)
that require strong connections to other networks (Barrett and
Simmons, 2015; Teckentrup et al., 2019; Fig. 4E).

Glutamate is better predicted by p32 FC compared with p24
FC

To test whether parcellation of the pgACC MRS ROI into p32
and p24 improved the prediction of pgACC glutamate, we used
two complementary machine learning approaches that enforce
different degrees of sparsity. PLSR fits a model based on global
information extracted from the feature space and outcome
(Zeighami et al., 2019). It is thus able to pick up diffuse global
effects of functional connectivity on local metabolite concentra-
tions. We use EN as a complementary approach to PLSR. EN, in
contrast to PLSR, penalizes some regression coefficients (here:
FC to target ROIs) to zero, resulting in a sparse model (Pervaiz et
al., 2020). EN therefore more strongly enforces spatially specific
effects (see Materials and Methods).
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Figure 5.  Glutamate levels can be predicted from functional connectivity profiles of p32, but not p24. A, B, Results of models cally more variance in Glu/tCr (R2 =

predicting Glu/tCr with FC profiles derived from the functional parcellation as predictors, using PLSR (4) and EN (B). €, D, Results
of models predicting Glu/tCr using FC profiles derived from the anatomical parcellation as predictors, using PLSR (€) and EN (D).
Violin plots denote the distribution of & in permutation tests (1000 permutations of metabolite levels). Bars denote the R value

0.423) compared with the EN model
that did not account for age (R* = 0.403;
Extended Data Fig. 5-3).

obtained using Glu/tCr (residualized for gray matter proportion in participants’ MRS voxels) as the predicted variable. Detailed sta-

tistics are presented in Extended Data Figure 5-1. Results did not change when absolute concentrations of Glu were predicted
(Extended Data Figure 5-2). When the influence of age was accounted for in the EN model, the distinction in predictive ability of

the two areas increased (Extended Data Figure 5-3). *p << 0.05, ***p < 0.001.

First, we used PLSR and EN to test whether FC from areas p24
and p32 could predict pgACC Glu/tCr (residualized for gray matter
proportion) better than expected by chance (Extended Data Fig. 5-
1). We found that FC from functional p32 could be predicted using
EN (R* = 0.324, p < 0.001; Fig. 5B). Although the PLSR model indi-
cated that the FC profile of functional p32 was associated with
pgACC Glu/tCr (R* = 0.181, p=0.119; Fig. 5A), this effect did not
reach statistical significance. Nevertheless, predicted Glu/tCr values
of the EN and PLSR models were highly correlated (R? = 0.543,
p < 0.001), indicating that both methods picked up similar informa-
tion in the connectivity profiles, and that feature selection in EN
was beneficial. Analyses using anatomic p32 replicated the predic-
tion of Glu by functional parcellation and both models were signifi-
cantly better than chance (EN: R* = 0.394, p < 0.001; PLSR: R* =
0.263, p=0.023; Fig. 5C,D). In contrast to functional and anatomic
P32, p24 FC was less consistently predictive of pgACC glutamatergic
metabolism. p24 FC was not predictive of Glu/tCr using PLSR (p
values > 0.450) or of using EN (p values > 0.999; Fig. 5, Extended
Data Fig. 5-1). Overall, pgACC glutamatergic metabolism was most
reliably predicted from p32 FC.

FC from the unparcellated MRS ROI could not predict Glu/
tCr better than chance using PLSR (R* = 0.142, p= 0.295), but
EN led to results comparable to those using p32 alone (R* =
0.384, p < 0.001). To test whether p32 FC could predict glutama-
tergic metabolism in the pgACC better than p24 FC or FC from
the unparcellated MRS ROI, we compared the variance explained
by two sets of predictors (e.g., p32 and p24 FC) using permuta-
tion tests. Overall, the explained variance of p32 FC was higher
than p24 FC, demonstrating that p32 FC was more strongly
associated with Glu/tCr compared with p24 (EN, functional:
p <0.001; PLSR, functional: p=0.082; EN anatomic: p < 0.001;
PLSR anatomic: p=0.017). p32 FC by itself predicted Glu/tCr

pgACC FC is not predictive of pgACC
GABA™

To test whether pgACC GABAergic
neurometabolism could be differentially
predicted from the FC of parcellated
voxels, we repeated the above analyses for GABA/tCr (residual-
ized for voxel gray matter proportion; Extended Data Fig. 6-1).
As the GABA signal at 3 ppm is likely to contain a contribution
of macromolecule resonances, measured concentrations of
GABA are reported as GABA™. A PLSR model built on the FC
profile of functional p24 numerically explained most variance
(R* = 0.185). However, none of the PLSR or EN models built on
FC profiles of anatomic or functional p24 and p32 could predict
GABA ™ /tCr better than chance. FC from the unparcellated MRS
voxel was also not predictive of pgACC GABAergic neurometab-
olism (p values > 0.05; Fig. 6). Although PLSR models yielded
numerically better prediction, none of the functionally or ana-
tomically informed models predicted GABA™ better than
chance. We performed a post hoc analysis of the pgACC Glu/
GABA™ ratio, a proxy of the local excitation/inhibition balance.
None of the models revealed significant associations.

Coexpression of GABAergic and glutamatergic genes

To investigate why glutamate may be more robustly predicted
from area FC than GABA, we explored whether glutamatergic and
GABAergic gene coexpression patterns are differentially associated
with area FC. Previous work has shown that glutamate and GABA
levels across the entire cingulate cortex follow glutamate and
GABA receptor fingerprints (Dou et al., 2013). Neurotransmitter
receptor density fingerprints shape the local excitatory/inhibitory
balance, which influences baseline resting-state functional connec-
tivity (van den Heuvel et al.,, 2019). van den Heuvel et al. (2016)
showed an association between the ratio of excitatory and inhibi-
tory gene expression and cortical resting-state FC. In addition,
recent work has shown that regions within functional networks
share gene expression patterns (“gene coexpression”) that are
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distinguishable from those shared within A GABA/Cr - PLSR - functional parcellation B GABA/Cr - EN - functional parcellation
other networks (Richiardi et al, 2015; 3 B
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networks that were most strongly associ-
ated with p32 and p24 FC—DMN and  Figure 6. GABA levels cannot be predicted from functional connectivity profiles of the pregenual anterior cingulate cortex.

vAt—also showed nonzero correlations
between gene coexpression for both GABA
and glutamate and pgACC FC (Extended
Data Fig. 7-2). A third network, the fronto-
parietal network (FPN), also showed non-
zero correlations between FC and gene
coexpression between pgACC and the net-
work targets. For these three networks, a
significant portion of variance in group FC is explained by canoni-
cal, structural factors such as gene expression.

As a next step, we investigated differences between GABAergic
and glutamatergic coexpression-FC correlations, focusing on the
networks for which an association between FC and gene expression
was apparent. Coexpression of GABAergic genes within the DMN
and vAt was more strongly coupled to FC within those networks
relative to glutamate (DMN: distance (D) =0.360, p < 0.001; vAt:
D =0.283, p=0.011; Fig. 7, Extended Data Fig. 7-2). This was not
the case for the FPN (D =0.147, p=0.488). For glutamate-associ-
ated genes, this relatively reduced coupling between canonical
structural and individual functional aspects could leave room for
individual variation in Glu levels to influence FC. This could in
part explain why compared with GABA ™, pgACC Glu levels could
be better predicted from individuals’ FC profiles.

By comparing FC associations with metabolites versus gene
coexpression, we can illustrate this possibility using our data. For
each target ROI, the PLSR B -weight represents the strength of
the relationship between glutamatergic or GABAergic metabo-
lism and FC to an area. Analogous to gene coexpression (Fig. 7),
the distribution of PLSR weights across the vAt was significantly
different from zero (Fig. 84, Extended Data Fig. 8-1). For this
network, the discrepancy of bootstrapped mean correlations
between FC and gene coexpression versus ones between FC and
local metabolism was smaller for glutamate (Fig. 8B), such that
metabolite-FC correlations were relatively stronger, and coex-
pression-FC correlations were relatively lower (ppoor = 0.008).

Cognitive state correlates of p32 and p24 FC-glutamate
associations

Next, we investigated the potential functional relevance of
the differential prediction of pgACC glutamate levels. PLSR

Results of PLSR and EN models for GABA™ /tCr. A, B, Results of models predicting GABA ¥ /tCr with FC profiles derived from the
functional parcellation as predictors, using PLSR (4) and EN (B). €, D, Results of models predicting GABA * /tCr with FC profiles
derived from the anatomical parcellation as predictors, using PLSR (€) and EN (D). Violin plots denote the distribution of & val-
ues in permutation tests. Bars denote R obtained using GABA " /t(r as the predicted variable (residualized for gray matter pro-
portion in participants' MRS voxels). Detailed statistics are presented in Extended Data Figure 6-1. Results did not change when
absolute concentrations of GABA™ /tCr were predicted (Extended Data Figure 5-2).

B -weight maps for functional p32 and p24 show different spatial
patterns (Fig. 9A,B, top, Extended Data Fig. 9-1, analogous
results for anatomic areas). To explore differences between the
two pgACC areas, we applied the Neurosynth decoder tool to
their respective [3-weight maps. Regions for which FC to p32 is
predictive of glutamate, when activated, correspond to cognitive
states related to the ventral attention network and cognitive con-
trol (Fig. 94, bottom). In contrast, regions important in the pre-
diction of glutamate from p24 FC, when activated, reflect
cognitive states related to movement and somatosensory experi-
ences (Fig. 9B, bottom). The difference between the two -maps
suggests that relative to p24, p32 FC to the precuneus and poste-
rior cingulate (i.e., DMN regions), anterior insula (vAt) as well as
subcortical regions is linearly associated with glutamate levels
(Fig. 9C). In general, increased glutamate in the whole pgACC
appears to strengthen p32 FC across a wider functional spectrum
compared with p24, whose FC coupling is restricted to the soma-
tosensory and motor regions (Fig. 9D).

Discussion

Psychiatric disorders such as depression and anxiety are charac-
terized by changes in neurometabolites (Pollack et al., 2008;
Horn et al., 2010; Colic et al., 2019) and functional connectivity
(Mulders et al., 2015). One of the key challenges in biological
psychiatry is to understand how changes in neurotransmission
lead to changes in brain function so that pharmacological inter-
ventions could be used to “normalize” brain function and
improve behavioral symptoms (Wang and Krystal, 2014; Allen et
al., 2019; van den Heuvel et al., 2019). However, technical limita-
tions of current neuroimaging techniques such as large MRS
voxels encompassing heterogeneous areas make the link of
metabolites to function of brain networks nontrivial (a “many-
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FC and mRNA co-expression associations
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Figure 7.  Compared with GABA, there is reduced coupling of glutamate-associated gene coexpression with pgACC
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sion correlations with p32 and p24 FC within the same functional network. Gene coexpression is calculated as the
Pearson correlation between pgACC p24 and p32 mean mRNA expression with mean mRNA expression in target ROls.
Coexpression—FC correlations are then calculated for each gene and averaged across Yeo networks. The full list of
genes used is presented in Extended Data Figure 7-1. For detailed statistics, see Extended Data Figure 7-2 and
Extended Data Figure 7-3. *p << 0.05, ***p << 0.001. Vis, Visual network; SoM, somatomotor network; Lim, limbic

network; Cer, cerebellum.

to-one mapping problem”; Paulus and Thompson, 2019). Here,
we demonstrate that parcellating an MRS region based on func-
tional connectivity or cytoarchitecture improves the prediction
of local neurometabolism via global connectivity profiles.
Restating the question as a problem of classification rather than
localization—can resting-state FC from an area predict local neu-
rometabolism or not?—allowed us to reduce the number of
comparisons and address the many-to-one mapping problem.
Specifically, we found that area p32 FC predicts glutamate better
than chance regardless of the parcellation scheme, whereas we
did not find converging evidence for the prediction of GABA™
from FC profiles. Moreover, prediction of glutamate from p32
FC explained as much or more variance than FC from the unpar-
cellated MRS ROI, while providing additional spatial informa-
tion. Collectively, our results show that multimodal imaging may
help to overcome the fundamental limitations of a single
method, as fMRI can improve the spatial specificity of local glu-
tamatergic metabolism assessed with conventional MRS.
Hierarchical clustering of the pgACC MRS voxel recovered
clusters in line with anatomic areas p24 and p32 (Palomero-
Gallagher et al, 2019), with distinct functional connections
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during rest. The area most predictive of
pgACC glutamate, p32, is well connected to
most functional networks but, compared with
p24, it has particularly strong FC to regions
that are part of the DMN. Area p24 showed
relatively stronger connectivity to parts of the
ventral attention network or salience network.
These findings are in line with previous work
in humans (Beckmann et al., 2009; Palomero-
Gallagher et al., 2019) and nonhuman prima-
tes (Pandya et al., 1981; Vogt and Pandya,
1987; Carmichael and Price, 1995). Moreover,
similar distinctions between p24 and p32
functional domains were found using direct
stimulation of the cortex using stereo-electro-
encephalography (Caruana et al, 2018). We
demonstrated that functional connectivity-
based parcellation of an MRS ROI can reflect
both cytoarchitectonic areas and well estab-
lished connectivity differences.

How should the differential prediction of
glutamate FC from the two pgACC areas be
interpreted? One possibility is that there is an
association between glutamate and p32 FC,
because of the stronger connectivity of the
area to the DMN. This intrinsic connectivity
network shows the highest metabolic activity
at rest (Raichle, 2001). Intriguingly, our find-
ings suggest another possible mechanism.
pgACC glutamate increases FC to networks
associated with a relatively broad functional
range, but particularly to regions of the vAt.
Glutamate concentrations in the pgACC may
therefore be an important factor contributing
to the ability of the region to switch between
exteroception (vAt or salience network)
and interoception (DMN). The interaction
between these networks is often dysregulated
in psychiatric disorders (Menon, 2011; Manoliu
et al,, 2014; Kaiser et al., 2015; Teckentrup et al.,
2019). In a sample of 22 healthy participants, the
sum of glutamate and glutamine could not pre-
dict functional connectivity between pgACC
and the left anterior insula, part of the vAt (Horn et al,, 2010). In
patients with MDD, the authors found a reduced anticorrelation of
the pgACC and Al. Although our sample is healthy, it is possible
that with our larger sample, we have captured effects similar to
those in the study by Horn et al. (2010) and a larger spectrum of
pgACC Glu/tCr concentrations. In MDD, the glutamatergic cycling
between neurons and glia is thought to be reduced, supported by
findings of reduced astrocyte density and markers in the anterior
cingulate cortex (Bernstein et al, 2015; Rajkowska, 2003) and
altered glutamine/glutamate ratios—a proxy of glutamatergic cy-
cling—in the pgACC (Colic et al., 2019). Our approach is particu-
larly well suited to probe how changes in the glutamine/glutamate
ratio relate to functional connectivity between pgACC and con-
nected regions in MDD. p32 in particular may be an especially rele-
vant target for future research on metabolic and functional changes
in psychiatric disorders.

We demonstrated the potential for further applications of this
method by prediction of age. Age, unlike gender or voxel gray
matter proportion, was highly correlated with glutamate levels.
This is not surprising, as previous work has shown age-
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Figure 8.  Associations of FC profiles with neurometabolites are constrained by canonical gene expression. A, PLSR B values by Yeo network (pooled across functional p24 and p32) show
that FC to vAt is associated with GABAergic and especially with glutamatergic metabolism (Extended Data Figure 8-1, detailed statistics). B, Canonical gene coexpression of GABAergic genes
within pgACC and vAt is more strongly correlated to FC than pgACC GABA™ levels. For glutamate, this discrepancy is less strong, suggesting that pgACC glutamate levels have more room to
influence FC to the vAt. Density plots in B display distributions of bootstrapped r values (50,000 iterations).

dependent decreases in glutamate levels in a variety of brain
regions, including the ACC (Schubert et al., 2004; Hédel et al.,
2013; but see Brandt et al.,, 2016), motor cortex (Kaiser et al.,
2015), and striatum (Zahr et al., 2008). Changes in GABA levels
with age are less consistent—a meta-analysis (Haga et al., 2009)
did not find evidence for age-related changes in GABA. In addi-
tion to glutamate-related changes, a wealth of research covers FC
changes that occur during aging. Particularly, intrinsic connec-
tivity in the DMN alters with age (Damoiseaux et al., 2008; Wu
et al, 2011; Tomasi and Volkow, 2012; Ferreira and Busatto,
2013). Both p24 FC and p32 FC were predictive of participants’
age using EN. The successful prediction of age from both areas is
encouraging and suggests that this method could be used for dif-
ferential prediction of other clinical characteristics. It also dem-
onstrates that while p24 FC is not predictive of glutamate, it is
predictive of age. What is more, after regressing out the influence
of age from FC and residualized Glu/tCr, the variance explained
in metabolism by p24 was reduced, whereas variance explained
by p32 increased compared with the model in which age was not
accounted for.

In contrast to the considerable predictive power for gluta-
mate, we did not find converging evidence for the prediction of
local GABAergic metabolism via global connectivity profiles.
Previous work demonstrated a positive correlation between
GABA levels in the pgACC and negative BOLD responses on
emotional stimulus presentation (Northoff et al., 2007), suggest-
ing a link between GABA and the potential to downregulate
DMN activity with increasing cognitive load. As our measure-
ments were acquired at rest, it may be that an association
between GABA™ and FC becomes apparent after stronger
recruitment of task-positive networks. Another explanation
relates to the complex association between GABAergic metabo-
lism and the BOLD response. Depending on the brain region
and network, an increase in inhibitory activity may or may not
lead to increased BOLD response (Bartels et al., 2008; Logothetis,

2008). Our results showed that GABA-associated genes were
more tightly linked to pgACC FC compared with glutamate-
associated genes. GABA coexpression-FC relationships may
thus be less variable across individuals. GABA modulates gluta-
matergic excitation by acting on pyramidal neurons in cortical
microcircuits, and local GABA™ concentrations may therefore
represent mostly local processes (Buzsdki et al., 2007; Logothetis,
2008; Isaacson and Scanziani, 2011). We explored whether the
local excitation/inhibition balance (Glu/GABA™) could be pre-
dicted from FC. None of the models revealed significant associa-
tions. This is in line with previous work that showed that the
excitation/inhibition balance in a DMN node was predictive of
intrinsic connectivity of the DMN, but not that of other networks
(Kapogiannis et al., 2013). To summarize, our results suggest
that pgACC measures of GABA™ are unlikely to be associated
with patterns of long-range functional connectivity at rest, calling
for alternative techniques in the future.

Strikingly, while functional and anatomic parcellation performed
similarly, there were vast differences in performance between EN
and PLSR models. For the region most predictive of glutamate, p32,
predicted values from EN and PLSR were highly correlated, suggest-
ing they pick up similar information. Nevertheless, EN models pro-
vide a more conclusive answer on whether a metabolite can be
predicted or not. In case there is no relationship between outcome
and predictors for EN, the built-in 10-fold cross-validation will lead
to models with all predictors reduced to zero, because there is no A
yielding a better than chance out-of-fold prediction. In such situa-
tions, PLSR models can still result in high explained variance,
because these are not equipped with a way to penalize predictors
that do not remain predictive in held-out folds. EN models have
previously been used to predict behavior (Kashyap et al., 2019) and
disease (Teipel et al., 2017) from neuroimaging data. This method
outperforms multiple regression (Teipel et al., 2017; Jollans et al,,
2019) and also frequently outperforms other machine learning tech-
niques in cases where the number of participants is similar or
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smaller than the number of datapoints (Jollans et al., 2019). Overall,
based on our results, combining MRS measures of local neurometa-
bolites with resting-state FC might be promising to identify candi-
date regions or networks.

The results presented here must be considered in light of sev-
eral limitations. First, the mean Dice overlap between MRS vox-
els and the functional areas was significantly greater for p24.
Nevertheless, functional area p24 was less strongly associated
with glutamatergic metabolism compared with functional area
p32. In addition, there was no significant relationship between
participants’ MRS voxel overlap with functional clusters and
their glutamate or GABA™ levels. Therefore, it is unlikely that
the larger MRS voxel overlap with cluster p24 had a significant
influence on our results. Second, as in most MRS studies, there
are potential confounds in the quantification of neurometabo-
lites. While GABA is more challenging to reliably quantify

compared with glutamate, it is unlikely that data quality played a
role in our findings. At high field strengths like 7 tesla, increased
signal dispersion allows for the separation of GABA peaks from
larger, overlapping resonances. Moreover, after our stringent
quality control, only five participants had to be excluded from
the GABA analyses. Nevertheless, it cannot be excluded that sig-
nals from macromolecules that overlap with the GABA peak at
3ppm have contributed to our negative result for GABA™.
Future work could test this by incorporating a measured macro-
molecular baseline in the basis set used for fitting MRS spectra.
With regard to glutamate, MRS measures are not limited to glu-
tamate as a neurotransmitter. Glutamate fulfills other, metabolic,
roles in the cell, including protein synthesis and energy metabo-
lism, which cannot be separated from a neurotransmitter (Rae,
2014). It also appears that vesicular glutamate is not detectable
by MRS (Kauppinen and Williams, 1991). The generalizability of
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the models needs to be assessed in an independent dataset. For
this purpose, 8-maps in MNI space are available for download
(https://neurovault.org/collections/ CWXNJGOY/). Last, the gene
expression dataset was obtained from an independent sample
(Human Brain Atlas) consisting of six donor brains. At present, it
is unclear whether gene expression and MRS measures are well
aligned and whether gene coexpression generalizes to a wider pop-
ulation of healthy living adults. Notwithstanding, our study shows
that associations of FC with canonical gene expression can provide
crucial insights into neurobiology.

To summarize, we demonstrated that combining comple-
mentary information from different neuroimaging modalities
(MRS and fMRI) can provide incremental spatial information on
the relationship between function and neurometabolism by capi-
talizing on the higher resolution of fMRI. Our results show that
p32 is more predictive of pgACC glutamate compared with p24
and suggest that, although p32 as a DMN node is strongly con-
nected to most networks, pgACC glutamate concentrations are
particularly associated with p32 FC to the ventral attention or
salience network. Unlike glutamate, GABA™ could not be reli-
ably predicted from pgACC FC, as canonical GABAergic coex-
pression may be more influential. As smaller voxel sizes reduce
SNR, this approach could be used as an alternative to extract
more localized information about key neurometabolites and can
be particularly informative when the MRS ROI cannot be
restricted to one functionally distinct area. Importantly, this
method could be applied to other multimodal datasets, including
EEG-fMRI or PET-fMRI to improve the spatial resolution of
inferences. Crucially, our novel combination of techniques can
be readily used in existing datasets to uncover more spatially spe-
cific relationships between functional connectivity underlying
neurometabolism in health and disease. Thus, a broader applica-
tion of interpretable machine learning methods may lead to a
better understanding of neurobiological mechanisms of common
psychiatric disorders.
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